초록 열기/닫기 버튼

Halide perovskite solar cells have been attracting tremendous attention as next-generation solar cell materials because of their excellent optical and electrical properties. Formamidinium lead tri-iodide (FAPbI3) exhibits the narrowest band gap among lead iodide perovskites and shows excellent thermal and chemical stability, also. However, the large-area coating of FAPbI3 needed for commercialization has not been successful because of the instability of the black phase of FAPbI3 at ambient temperature. This study presents a compositional engineering direction to control the polymorph of the FAPbI3 thin film for the shear coating processes, without halide mixing. By adopting a hot substrate above 100 oC, our shear coating process can produce the black phase FA-based halide perovskites without halide mixing. We carefully investigate the Cs-FA and MA-FA mixed lead iodide perovskites’ phase stability by combining the study with thin-film fabrication and ab initio calculations. Cs-FA mixing shows promising behaviors for stabilizing α-FAPbI3 (black phase) compared with MA-FA. Stable FA-rich perovskite films cannot be achieved via shear coating processes with MA-FA mixing. Ab initio calculations revealed that Cs-FA mixing is excellent for inhibiting phase decomposition and water incorporation. This study is the first report that FA-based halide perovskite thin films can be made with the shear coating process without MA-Br mixing. We reveal the origin of the stable film formation with Cs-FA mixing, and present future research directions for fabricating FA-based perovskite thin films using shear coating.