초록 열기/닫기 버튼

In this study, the methodology of the springback prediction of automotive parts applied 3rd generation AHSS was investigated using the response surface model analysis based on a regression model, and the meta model analysis based on a Kriging model. To design the learning data set for constructing the springback prediction models, and the experimental design was conducted at three levels for each processing variable using the definitive screening designs method. The hat-shaped member, which is the basic shape of the member parts, was selected and the springback values were measured for each processing type and processing variable using the finite element analysis. When the nonlinearity of the variables is small during the hat-shaped member forming, the response surface model and the meta model can provide the same processing parameter. However, the accuracy of the springback prediction of the meta model is better than the response surface model. Even in the case of the simple shape parts forming, the springback prediction accuracy of the meta model is better than that of the response surface model, when more variables are considered and the nonlinearity effect of the variables is large. The efficient global optimization algorithm-based Kriging is appropriate in resolving the high computational complexity optimization problems such as developing automotive parts.